
Chapter 1
Introduction

Contents

1.1 Fundamental Concepts 2
1.1.1 Confidentiality, Integrity, and Availability 3
1.1.2 Assurance, Authenticity, and Anonymity 9
1.1.3 Threats and Attacks 14
1.1.4 Security Principles 15

1.2 Access Control Models 19
1.2.1 Access Control Matrices 19
1.2.2 Access Control Lists 20
1.2.3 Capabilities . 22
1.2.4 Role-Based Access Control 23

1.3 Cryptographic Concepts 25
1.3.1 Encryption . 25
1.3.2 Digital Signatures 31
1.3.3 Simple Attacks on Cryptosystems 32
1.3.4 Cryptographic Hash Functions 35
1.3.5 Digital Certificates 37

1.4 Implementation and Usability Issues 39
1.4.1 Efficiency and Usability 39
1.4.2 Passwords . 41
1.4.3 Social Engineering 43
1.4.4 Vulnerabilities from Programming Errors 44

1.5 Exercises . 46

1

2 Chapter 1. Introduction

1.1 Fundamental Concepts

In this chapter, we introduce several fundamental concepts in computer
security. Topics range from theoretical cryptographic primitives, such as
digital signatures, to practical usability issues, such as social engineering.
This chapter provides an informal and intuitive description of a variety of
topics that will be covered in more detail in the rest of the book.

Existing computer systems may contain legacy features of earlier ver-
sions dating back to bygone eras, such as when the Internet was the sole
domain of academic researchers and military labs. For instance, assump-
tions of trust and lack of malicious behavior among network-connected
machines, which may have been justifiable in the early eighties, are surpris-
ingly still present in the way the Internet operates today. Such assumptions
have led to the growth of Internet-based crime.

An important aspect of computer security is the identification of vulner-
abilities in computer systems, which can, for instance, allow a malicious
user to gain access to private data and even assume full control of a
machine. Vulnerabilities enable a variety of attacks. Analysis of these
attacks can determine the severity of damage that can be inflicted and
the likelihood that the attack can be further replicated. Actions that need
to be taken to defend against attacks include identifying compromised
machines, removing the malicious code, and patching systems to eliminate
the vulnerability.

In order to have a secure computer system, sound models are a first
step. In particular, it is important to define the security properties that
must be assured, anticipate the types of attacks that could be launched,
and develop specific defenses. The design should also take into account
usability issues. Indeed, security measures that are difficult to understand
and inconvenient to follow will likely lead to failure of adoption. Next, the
hardware and software implementation of a system needs to be rigorously
tested to detect programming errors that introduce vulnerabilities. Once
the system is deployed, procedures should be put in place to monitor the
behavior of the system, detect security breaches, and react to them. Finally,
security-related patches to the system must be applied as soon as they
become available.

Computer security concepts often are better understood by looking
at issues in a broader context. For this reason, this book also includes
discussions of the security of various physical and real-world systems,
including locks, ATM machines, and passenger screening at airports.

1.1. Fundamental Concepts 3

1.1.1 Confidentiality, Integrity, and Availability

Computers and networks are being misused at a growing rate. Spam,
phishing, and computer viruses are becoming multibillion-dollar problems,
as is identity theft, which poses a serious threat to the personal finances
and credit ratings of users, and creates liabilities for corporations. Thus,
there is a growing need for broader knowledge of computer security in
society as well as increased expertise among information technology pro-
fessionals. Society needs more security-educated computer professionals,
who can successfully defend against and prevent computer attacks, as well
as security-educated computer users, who can safely manage their own
information and the systems they use.

One of the first things we need to do in a book on computer security
is to define our concepts and terms. Classically, information security has
been defined in terms of the acronym C.I.A., which in this case stands for
confidentiality, integrity, and availability. (See Figure 1.1.)

Integrity

Confidentiality Availability

Figure 1.1: The C.I.A. concepts: confidentiality, integrity, and availability.

4 Chapter 1. Introduction

Confidentiality

In the context of computer security, confidentiality is the avoidance of the
unauthorized disclosure of information. That is, confidentiality involves
the protection of data, providing access for those who are allowed to see it
while disallowing others from learning anything about its content.

Keeping information secret is often at the heart of information security,
and this concept, in fact, predates computers. For example, in the first
recorded use of cryptography, Julius Caesar communicated commands to
his generals using a simple cipher. In his cipher, Caesar took each letter in
his message and substituted D for A, E for B, and so on. This cipher can be
easily broken, making it an inappropriate tool for achieving confidentiality
today. But in its time, the Caesar cipher was probably fairly secure, since
most of Caesar’s enemies couldn’t read Latin anyway.

Nowadays, achieving confidentiality is more of a challenge. Computers
are everywhere, and each one is capable of performing operations that
could compromise confidentiality. With all of these threats to the confiden-
tiality of information, computer security researchers and system designers
have come up with a number of tools for protecting sensitive information.
These tools incorporate the following concepts:
• Encryption: the transformation of information using a secret, called

an encryption key, so that the transformed information can only be
read using another secret, called the decryption key (which may, in
some cases, be the same as the encryption key). To be secure, an
encryption scheme should make it extremely difficult for someone to
determine the original information without use of the decryption key.
• Access control: rules and policies that limit access to confidential

information to those people and/or systems with a “need to know.”
This need to know may be determined by identity, such as a person’s
name or a computer’s serial number, or by a role that a person has,
such as being a manager or a computer security specialist.
• Authentication: the determination of the identity or role that some-

one has. This determination can be done in a number of different
ways, but it is usually based on a combination of something the
person has (like a smart card or a radio key fob storing secret keys),
something the person knows (like a password), and something the
person is (like a human with a fingerprint). The concept of authenti-
cation is schematically illustrated in Figure 1.2.
• Authorization: the determination if a person or system is allowed

access to resources, based on an access control policy. Such authoriza-
tions should prevent an attacker from tricking the system into letting
him have access to protected resources.

1.1. Fundamental Concepts 5

password=ucIb()w1V
mother=Jones

human with fingers
and eyes mother=Jones

pet=Caesar
y

Something you are

Something you knowSomething you know

radio token with

Something you have
secret keys

Figure 1.2: Three foundations for authentication.

• Physical security: the establishment of physical barriers to limit ac-
cess to protected computational resources. Such barriers include locks
on cabinets and doors, the placement of computers in windowless
rooms, the use of sound dampening materials, and even the construc-
tion of buildings or rooms with walls incorporating copper meshes
(called Faraday cages) so that electromagnetic signals cannot enter or
exit the enclosure.

When we visit a web page that asks for our credit card number and
our Internet browser shows a little lock icon in the corner, there is a lot
that has gone on in the background to help ensure the confidentiality of
our credit card number. In fact, a number of tools have probably been
brought to bear here. Our browser begins the process by performing an
authentication procedure to verify that the web site we are connecting to
is indeed who it says it is. While this is going on, the web site might
itself be checking that our browser is authentic and that we have the
appropriate authorizations to access this web page according to its access
control policy. Our browser then asks the web site for an encryption key to
encrypt our credit card, which it then uses so that it only sends our credit
card information in encrypted form. Finally, once our credit card number
reaches the server that is providing this web site, the data center where

6 Chapter 1. Introduction

the server is located should have appropriate levels of physical security,
access policies, and authorization and authentication mechanisms to keep
our credit card number safe. We discuss these topics in some detail in this
book.

For instance, in Section 2.4.2, we study a number of real demonstrated
risks to physical eavesdropping. For example, researchers have shown that
one can determine what someone is typing just by listening to a recording
of their key strokes. Likewise, experiments show that it is possible to
reconstruct the image of a computer screen either by monitoring its elec-
tromagnetic radiation or even from a video of a blank wall that the screen
is shining on. Thus, physical security is an information security concept
that should not be taken for granted.

Integrity

Another important aspect of information security is integrity, which is the
property that information has not be altered in an unauthorized way.

The importance of integrity is often demonstrated to school children in
the Telephone game. In this game, a group of children sit in a circle and the
person who is “it” whispers a message in the ear of his or her neighbor on
the right. Each child in the circle then waits to listen to the message from
his or her neighbor on the left. Once a child has received the message, he
or she then whispers this same message to their neighbor on the right. This
message passing process continues until the message goes full circle and
returns to the person who is “it.” At that point, the last person to hear the
message says the message out loud so that everyone can hear it. Typically,
the message has been so mangled by this point that it is a great joke to all the
children, and the game is repeated with a new person being “it.” And, with
each repeat play, the game reinforces that this whispering process rarely
ever preserves data integrity. Indeed, could this be one of the reasons we
often refer to rumors as being “whispered”?

There are a number of ways that data integrity can be compromised in
computer systems and networks, and these compromises can be benign or
malicious. For example, a benign compromise might come from a storage
device being hit with a stray cosmic ray that flips a bit in an important file,
or a disk drive might simply crash, completely destroying some of its files.
A malicious compromise might come from a computer virus that infects our
system and deliberately changes some the files of our operating system, so
that our computer then works to replicate the virus and send it to other
computers. Thus, it is important that computer systems provide tools to
support data integrity.

1.1. Fundamental Concepts 7

The previously mentioned tools for protecting the confidentiality of
information, denying access to data to users without appropriate access
rights, also help prevent data from being modified in the first place. In
addition, there are several tools specifically designed to support integrity,
including the following:
• Backups: the periodic archiving of data. This archiving is done

so that data files can be restored should they ever be altered in an
unauthorized or unintended way.

• Checksums: the computation of a function that maps the contents of a
file to a numerical value. A checksum function depends on the entire
contents of a file and is designed in a way that even a small change
to the input file (such as flipping a single bit) is highly likely to result
in a different output value. Checksums are like trip-wires—they are
used to detect when a breach to data integrity has occurred.

• Data correcting codes: methods for storing data in such a way that
small changes can be easily detected and automatically corrected.
These codes are typically applied to small units of storage (e.g., at the
byte level or memory word level), but there are also data-correcting
codes that can be applied to entire files as well.

These tools for achieving data integrity all possess a common trait—they
use redundancy. That is, they involve the replication of some information
content or functions of the data so that we can detect and sometimes even
correct breaches in data integrity.

In addition, we should stress that it is not just the content of a data
file that needs to be maintained with respect to integrity. We also need to
protect the metadata for each data file, which are attributes of the file or
information about access to the file that are not strictly a part of its content.
Examples of metadata include the user who is the owner of the file, the
last user who has modified the file, the last user who has read the file, the
dates and times when the file was created and last modified and accessed,
the name and location of the file in the file system, and the list of users or
groups who can read or write the file. Thus, changing any metadata of a
file should be considered a violation of its integrity.

For example, a computer intruder might not actually modify the content
of any user files in a system he has infiltrated, but he may nevertheless be
modifying metadata, such as access time stamps, by looking at our files
(and thereby compromising their confidentiality if they are not encrypted).
Indeed, if our system has integrity checks in place for this type of metadata,
it may be able to detect an intrusion that would have otherwise gone
unnoticed.

8 Chapter 1. Introduction

Availability

Besides confidentiality and integrity, another important property of infor-
mation security is availability, which is the property that information is
accessible and modifiable in a timely fashion by those authorized to do so.

Information that is locked in a cast-iron safe high on a Tibetan mountain
and guarded round the clock by a devoted army of ninjas may be con-
sidered safe, but it is not practically secure from an information security
perspective if it takes us weeks or months to reach it. Indeed, the quality of
some information is directly associated with how available it is.

For example, stock quotes are most useful when they are fresh. Also,
imagine the damage that could be caused if someone stole our credit card
and it took weeks before our credit card company could notify anyone,
because its list of stolen numbers was unavailable to merchants. Thus, as
with confidentiality and integrity, computer security researchers and sys-
tem designers have developed a number of tools for providing availability,
including the following:

• Physical protections: infrastructure meant to keep information avail-
able even in the event of physical challenges. Such protections can
include buildings housing critical computer systems to be constructed
to withstand storms, earthquakes, and bomb blasts, and outfitted
with generators and other electronic equipment to be able to cope
with power outages and surges.

• Computational redundancies: computers and storage devices that
serve as fallbacks in the case of failures. For example, redundant
arrays of inexpensive disks (RAID) use storage redundancies to keep
data available to their clients. Also, web servers are often organized
in multiples called “farms” so that the failure of any single computer
can be dealt with without degrading the availability of the web site.

Because availability is so important, an attacker who otherwise doesn’t
care about the confidentiality or integrity of data may choose to attack its
availability. For instance, a thief who steals lots of credit cards might wish
to attack the availability of the list of stolen credit cards that is maintained
and broadcast by a major credit card company. Thus, availability forms the
third leg of support for the vital C.I.A. triad of information security.

1.1. Fundamental Concepts 9

1.1.2 Assurance, Authenticity, and Anonymity

In addition to the classic C.I.A. concepts of confidentiality, integrity, and
availability, discussed in the previous section, there are a number of ad-
ditional concepts that are also important in modern computer security
applications. These concepts can likewise be characterized by a three-letter
acronym, A.A.A., which in this context refers to assurance, authenticity,
and anonymity. (See Figure 1.3.)

Authenticity

Anonymity

Assurance

Figure 1.3: The A.A.A. concepts: assurance, authenticity, and anonymity.
Note that unlike the C.I.A. concepts, the A.A.A. concepts are independent
of each other.

Assurance

Assurance, in the context of computer security, refers to how trust is
provided and managed in computer systems. Admittedly, trust itself is
difficult to quantify, but we know it involves the degree to which we have
confidence that people or systems are behaving in the way we expect.

10 Chapter 1. Introduction

Furthermore, trust involves the interplay of the following:

• Policies specify behavioral expectations that people or systems have
for themselves and others. For example, the designers of an online
music system may specify policies that describe how users can access
and copy songs.

• Permissions describe the behaviors that are allowed by the agents that
interact with a person or system. For instance, an online music store
may provide permissions for limited access and copying to people
who have purchased certain songs.

• Protections describe mechanisms put in place to enforce permissions
and polices. Using our running example of an online music store,
we could imagine that such a system would build in protections to
prevent people from unauthorized access and copying of its songs.

Assurance doesn’t just go from systems to users, however. A user
providing her credit card number to an online music system may expect
the system to abide by its published policies regarding the use of credit card
numbers, she might grant permission to the system to make small charges
to her card for music purchases, and she may also have a protection system
in place with her credit card company so that she would not be liable for any
fraudulent charges on her card. Thus, with respect to computer systems,
assurance involves the management of trust in two directions—from users
to systems and from systems to users.

The designers of computer systems want to protect more than just the
confidentiality, integrity, and availability of information. They also want
to protect and manage the resources of these systems and they want to
make sure users don’t misuse these resources. Put in negative terms, they
want, for example, to keep unauthorized people from using their CPUs,
memory, and networks, even if no information is compromised in terms
of the C.I.A. framework. Thus, designers want assurance that the people
using the resources of their systems are doing so in line with their policies.

Likewise, managing information in a computer system can also go
beyond the C.I.A. framework, in that we may wish to manage the way that
information is used. For instance, if a user of an online movie rental system
has rented an electronic copy of a movie, we might want to allow that user
to watch it only a fixed number of times or we might want to insist that he
watch it within the next 30 days. Designers of music playing devices and
applications may likewise wish to allow users to make a few backup copies
of their music for personal use, but restrict copying so that they cannot
make hundreds of pirate CDs from their music files.

1.1. Fundamental Concepts 11

Thus, trust management deals with the design of effective, enforceable
policies, methods for granting permissions to trusted users, and the com-
ponents that can enforce those policies and permissions for protecting and
managing the resources in the system. The policies can be complicated, like
the contracts used in license agreements for movies, or they can be fairly
simple, like a policy that says that only the owner of a computer is allowed
to use its CPU. So it is best if a system designer comes up with policies that
are easy to enforce and permissions that are easy to comply with.

Another important part of system assurance involves software engi-
neering. The designers of a system need to know that the software that
implements their system is coded so that it conforms to their design. There
are, in fact, plenty of examples of systems that were designed correctly
“on paper,” but which worked incorrectly because those designs were not
implemented correctly.

A classic example of such an incorrect implementation involves the
use of pseudo-random number generators in security designs. A pseudo-
random number generator (PRNG) is a program that returns a sequence
of numbers that are statistically random, given a starting number, called
the seed, which is assumed to be random. The designer of a system
might specify that a PRNG be used in a certain context, like encryption, so
that each encryption will be different. But if the person actually writing
the program makes the mistake of always using the same seed for this
pseudo-random number generator, then the sequences of so-called pseudo-
random numbers will always be the same. Thus, the designers of secure
systems should not only have good designs, they should also have good
specifications and implementations.

Placing trust in a system is more problematic. Users typically don’t have
the same computational power as the servers employed by such systems.
So the trust that users place in a system has to come from the limited
amount of computing that they can do, as well as the legal and reputational
damage that the user can do to the company that owns the system if it fails
to live up to the user’s trust.

As mentioned above, when an Internet browser “locks the lock” to
indicate that communication with a web site is now secure, it is performing
a number of computational services on behalf of the user. It is encrypting
the session so that no outsiders can eavesdrop on the communication and,
if it is configured correctly, the browser has done some rudimentary checks
to make sure the web site is being run by the company that it claims is its
owner. So long as such knowledge can be enforced, then the user at least
has some recourse should she be cheated by the web site—she can take
evidence of this bad behavior to court or to a reputation opinion web site.

12 Chapter 1. Introduction

Authenticity

With so many online services providing content, resources, and even com-
putational services, there is a need for these systems to be able to enforce
their policies. Legally, this requires that we have an electronic way of
enforcing contracts. That is, when someone says that they are going to buy
a song from an online music store, there should be some way to enforce this
commitment. Likewise, when an online movie store commits to allowing a
user to rent a movie and watch it sometime in the following 30 days, there
should be some enforceable way for that user to know that the movie will
be available for that entire time.

Authenticity is the ability to determine that statements, policies, and
permissions issued by persons or systems are genuine. If such things can
be faked, there is no way to enforce the implied contracts that people and
systems engage in when buying and selling items online. Also, a person or
system could claim that they did not make such a commitment—they could
say that the commitment was made by someone pretending to be them.

Formally, we say that a protocol that achieves such types of authenticity
demonstrates nonrepudiation. Nonrepudiation is the property that authen-
tic statements issued by some person or system cannot be denied.

The chief way that the nonrepudiation property is accomplished is
through the use of digital signatures. These are cryptographic computa-
tions that allow a person or system to commit to the authenticity of their
documents in a unique way that achieves nonrepudiation. We give a more
formal definition of digital signatures in Section 1.3.2 and we discuss spe-
cific implementations of digital signatures elsewhere in this book, but here
it is sufficient to know that a digital signature provides a computational
analogue to real-world, so-called blue-ink signatures.

In fact, digital signatures typically have some additional benefits over
blue-ink signatures, in that digital signatures also allow to check the in-
tegrity of signed documents. That is, if a document is modified, then the
signature on that document becomes invalid. An important requirement
of authenticity, therefore, is that we need to have reliable ways of elec-
tronically identifying people, which is a topic we discuss in Section 1.3 on
cryptographic primitives.

The concept we discuss next is instead on the necessary flip side of
creating systems that are so tied to personal identities, which is what is
required for digital signatures to make any sense.

1.1. Fundamental Concepts 13

Anonymity

When people interact with systems in ways that involve their real-world
identities, this interaction can have a number of positive benefits, as out-
lined above. There is an unfortunate side effect from using personal
identities in such electronic transactions, however. We end up spreading
our identity across a host of digital records, which ties our identity to
our medical history, purchase history, legal records, email communications,
employment records, etc. Therefore, we have a need for anonymity, which
is the property that certain records or transactions not to be attributable to
any individual.

If organizations need to publish data about their members or clients, we
should expect that they do so in a privacy-preserving fashion, using some
of the following tools:

• Aggregation: the combining of data from many individuals so that
disclosed sums or averages cannot be tied to any individual. For ex-
ample, the U.S. Census routinely publishes population breakdowns of
zip-code regions by ethnicity, salary, age, etc., but it only does so when
such disclosures would not expose details about any individual.

• Mixing: the intertwining of transactions, information, or communica-
tions in a way that cannot be traced to any individual. This technique
is somewhat technical, but it involves systems that can mix data
together in a quasi-random way so that transactions or searches can
still be performed, but without the release of any individual identity.

• Proxies: trusted agents that are willing to engage in actions for an
individual in a way that cannot be traced back to that person. For
example, Internet searching proxies are web sites that themselves
provide an Internet browser interface, so that individuals can visit
web sites that they might be blocked from, for instance, because of
the country they are located in.

• Pseudonyms: fictional identities that can fill in for real identities in
communications and transactions, but are otherwise known only to
a trusted entity. For example, many online social networking sites
allow users to interact with each other using pseudonyms, so that
they can communicate and create an online persona without revealing
their actual identity.

Anonymity should be a goal that is provided with safeguards whenever
possible and appropriate.

14 Chapter 1. Introduction

1.1.3 Threats and Attacks

Having discussed the various goals of computer security, we should now
mention some of the threats and attacks that can compromise these goals:
• Eavesdropping: the interception of information intended for someone

else during its transmission over a communication channel. Examples
include packet sniffers, which monitor nearby Internet traffic, such as
in a wireless access location. This is an attack on confidentiality.

• Alteration: unauthorized modification of information. Examples
of alteration attacks include the man-in-the-middle attack, where
a network stream is intercepted, modified, and retransmitted, and
computer viruses, which modify critical system files so as to perform
some malicious action and to replicate themselves. Alteration is an
attack on data integrity.

• Denial-of-service: the interruption or degradation of a data service or
information access. Examples include email spam, to the degree that
it is meant to simply fill up a mail queue and slow down an email
server. Denial of service is an attack on availability.

• Masquerading: the fabrication of information that is purported to
be from someone who is not actually the author. Examples of mas-
querading attacks include phishing, which creates a web site that
looks like a real bank or other e-commerce site, but is intended only
for gathering passwords, and spoofing, which may involve sending
on a network data packets that have false return addresses. Mas-
querading is an attack on authenticity, and, in the case of phishing,
an attempt to compromise confidentiality and/or anonymity.

• Repudiation: the denial of a commitment or data receipt. This in-
volves an attempt to back out of a contract or a protocol that requires
the different parties to provide receipts acknowledging that data has
been received. This is an attack on assurance.

• Correlation and traceback: the integration of multiple data sources
and information flows to determine the source of a particular data
stream or piece of information. This is an attack on anonymity.

There are other types of attacks as well, such as military-level attacks meant
to break cryptographic secrets. In addition, there are composite attacks,
which combine several of the above types of attacks into one. But those
listed above are among the most common types of attacks.

1.1. Fundamental Concepts 15

1.1.4 Security Principles

We conclude this section by presenting the ten security principles listed
in a classic 1975 paper by Saltzer and Schroeder. In spite of their age,
these principles remain important guidelines for securing today’s computer
systems and networks.

1. Economy of mechanism. This principle stresses simplicity in the
design and implementation of security measures. While applicable
to most engineering endeavors, the notion of simplicity is especially
important in the security domain, since a simple security framework
facilitates its understanding by developers and users and enables the
efficient development and verification of enforcement methods for it.
Economy of mechanism is thus closely related to implementation and
usability issues, which we touch on in Section 1.4.

2. Fail-safe defaults. This principle states that the default configuration
of a system should have a conservative protection scheme. For ex-
ample, when adding a new user to an operating system, the default
group of the user should have minimal access rights to files and
services. Unfortunately, operating systems and applications often
have default options that favor usability over security. This has been
historically the case for a number of popular applications, such as web
browsers that allow the execution of code downloaded from the web
server. Many popular access control models, such as those outlined
in Section 1.2, are based on the assumption of a fail-safe permission
default. Namely, if no access rights are explicitly specified for a
certain subject-object pair (s, o) (e.g., an empty cell of an access control
matrix), then all types of access to object o are denied for subject s.

3. Complete mediation. The idea behind this principle is that every
access to a resource must be checked for compliance with a protection
scheme. As a consequence, one should be wary of performance im-
provement techniques that save the results of previous authorization
checks, since permissions can change over time. For example, an
online banking web site should require users to sign on again after
a certain amount of time, say, 15 minutes, has elapsed. File systems
vary in the way access checks are performed by an application. For
example, it can be risky if permissions are checked the first time a
program requests access to a file, but subsequent accesses to the same
file are not checked again while the application is still running.

16 Chapter 1. Introduction

4. Open design. According to this principle, the security architecture
and design of a system should be made publicly available. Security
should rely only on keeping cryptographic keys secret. Open design
allows for a system to be scrutinized by multiple parties, which leads
to the early discovery and correction of security vulnerabilities caused
by design errors. Making the implementation of the system available
for inspection, such as in open source software, allows for a more
detailed review of security features and a more direct process for
fixing software bugs. The open design principle is the opposite of the
approach known as security by obscurity, which tries to achieve secu-
rity by keeping cryptographic algorithms secret and which has been
historically used without success by several organizations. Note that
while it is straightforward to change a compromised cryptographic
key, it is usually infeasible to modify a system whose security has
been threatened by a leak of its design.

5. Separation of privilege. This principle dictates that multiple con-
ditions should be required to achieve access to restricted resources
or have a program perform some action. In the years since the
publishing of the Saltzer-Schroeder paper, the term has come to also
imply a separation of the components of a system, to limit the damage
caused by a security breach of any individual component.

6. Least privilege. Each program and user of a computer system should
operate with the bare minimum privileges necessary to function prop-
erly. If this principle is enforced, abuse of privileges is restricted, and
the damage caused by the compromise of a particular application or
user account is minimized. The military concept of need-to-know
information is an example of this principle. When this principle is
ignored, then extra damage is possible from security breaches. For
instance, malicious code injected by the attacker into a web server
application running with full administrator privileges can do sub-
stantial damage to the system. Instead, applying the least privilege
principle, the web server application should have the minimal set of
permissions that are needed for its operation.

7. Least common mechanism. In systems with multiple users, mecha-
nisms allowing resources to be shared by more than one user should
be minimized. For example, if a file or application needs to be
accessed by more than one user, then these users should have separate
channels by which to access these resources, to prevent unforeseen
consequences that could cause security problems.

1.1. Fundamental Concepts 17

8. Psychological acceptability. This principle states that user interfaces
should be well designed and intuitive, and all security-related set-
tings should adhere to what an ordinary user might expect. Differ-
ences in the behavior of a program and a user’s expectations may
cause security problems such as dangerous misconfigurations of soft-
ware, so this principle seeks to minimize these differences. Several
email applications incorporate cryptographic techniques (Section 1.3)
for encrypting and digitally signing email messages, but, despite
their broad applicability, such powerful cryptographic features are
rarely used in practice. One of the reasons for this state of affairs is
believed to be the clumsy and nonintuitive interfaces so far provided
by existing email applications for the use of cryptographic features.

9. Work factor. According to this principle, the cost of circumventing
a security mechanism should be compared with the resources of an
attacker when designing a security scheme. A system developed
to protect student grades in a university database, which may be
attacked by snoopers or students trying to change their grades, prob-
ably needs less sophisticated security measures than a system built to
protect military secrets, which may be attacked by government intelli-
gence organizations. Saltzer and Schroeder admit that the work factor
principle translates poorly to electronic systems, where it is difficult
to determine the amount of work required to compromise security.
In addition, technology advances so rapidly that intrusion techniques
considered infeasible at a certain time may become trivial to perform
within a few years. For example, as discussed in Section 1.4.2, brute-
force password cracking is becoming increasingly feasible to perform
on an inexpensive personal computer.

10. Compromise recording. Finally, this principle states that sometimes
it is more desirable to record the details of an intrusion than to
adopt more sophisticated measures to prevent it. Internet-connected
surveillance cameras are a typical example of an effective compromise
record system that can be deployed to protect a building in lieu of
reinforcing doors and windows. The servers in an office network may
maintain logs for all accesses to files, all emails sent and received,
and all web browsing sessions. Again, the compromise recording
principle does not hold as strongly on computer systems, since it may
be difficult to detect intrusion and adept attackers may be able to
remove their tracks on the compromised machine (e.g., by deleting
log entries).

18 Chapter 1. Introduction

The Ten Security Principles

These ten security principles are schematically illustrated in Figure 1.4. As
mentioned above, these principles have been born out time and again as
being fundamental for computer security. Moreover, as suggested by the
figure, these principles work in concert to protect computers and infor-
mation. For example, economy of mechanism naturally aids open design,
since a simple system is easier to understand and an open system publically
demonstrates security that comes from such a simple system.

�������	

���������

������	
��

���������

���������

��������

�������

���������

���
������

���������
��

��������

�����

��������

�����

������

���������

��	����������

�����������	

���
������

���������

���������

Figure 1.4: The ten security principles by Saltzer and Schroeder.

1.2. Access Control Models 19

1.2 Access Control Models

One of the best ways to defend against attacks is to prevent them in the
first place. By providing for a rigorous means of determining who has
access to various pieces of information, we can often prevent attacks on
confidentiality, integrity, and anonymity. In this section, we discuss some
of the most popular means for managing access control.

All of the models assume that there are data managers, data owners,
or system administrators who are defining the access control specifications.
The intent is that these folks should be restricting access to those who have
a need to access and/or modify the information in question. That is, they
should be applying the principle of least privilege.

1.2.1 Access Control Matrices

A useful tool for determining access control rights is the access control
matrix, which is a table that defines permissions. Each row of this table
is associated with a subject, which is a user, group, or system that can
perform actions. Each column of the table is associated with an object,
which is a file, directory, document, device, resource, or any other entity
for which we want to define access rights. Each cell of the table is then
filled with the access rights for the associated combination of subject and
object. Access rights can include actions such as reading, writing, copying,
executing, deleting, and annotating. An empty cell means that no access
rights are granted. We show an example access control matrix for part of a
fictional file system and a set of users in Table 1.1.

/etc/passwd /usr/bin/ /u/roberto/ /admin/
root read, write read, write, exec read, write, exec read, write, exec
mike read read, exec
roberto read read, exec read, write, exec
backup read read, exec read, exec read, exec
· · · · · · · · · · · · · · ·

Table 1.1: An example access control matrix. This table lists read, write, and
execution (exec) access rights for each of four fictional users with respect to
one file, /etc/passwd, and three directories.

20 Chapter 1. Introduction

Advantages

The nice thing about an access control matrix is that it allows for fast and
easy determination of the access control rights for any subject-object pair—
just go to the cell in the table for this subject’s row and this object’s column.
The set of access control rights for this subject-object pair is sitting right
there, and locating a record of interest can be done with a single operation
of looking up a cell in a matrix. In addition, the access control matrix
gives administrators a simple, visual way of seeing the entire set of access
control relationships all at once, and the degree of control is as specific as the
granularity of subject-object pairs. Thus, there are a number of advantages
to this access control model.

Disadvantages

There is a fairly big disadvantage to the access control matrix, however—it
can get really big. In particular, if we have n subjects and m objects, then the
access control matrix has n rows, m columns, and n ·m cells. For example,
a reasonably sized computer server could easily have 1,000 subjects, who
are its users, and 1,000,000 objects, which are its files and directories. But
this would imply an access control matrix with 1 billion cells! It is hard
to imagine there is a system administrator anywhere on the planet with
enough time and patience to fill in all the cells for a table this large! Also,
nobody would be able to view this table all at once.

To overcome the lack of scalability of the access control matrix, com-
puter security researchers and system administrators have suggested a
number of alternatives to the access control matrix. We discuss three of
these models in the remaining part of this section. In particular, we discuss
access control lists, capabilities, and role-based access control. Each of these
models provides the same functionality as the access control matrix, but in
ways that reduce its complexity.

1.2.2 Access Control Lists

The access control list (ACL) model takes an object-centered approach.
It defines, for each object, o, a list, L, called o’s access control list, which
enumerates all the subjects that have access rights for o and, for each such
subject, s, gives the access rights that s has for object o.

Essentially, the ACL model takes each column of the access control
matrix and compresses it into a list by ignoring all the subject-object pairs
in that column that correspond to empty cells. (See Figure 1.5.)

1.2. Access Control Models 21

/etc/passwd /usr/bin/ /u/roberto/ /admin/

root: r,w,x

backup: r,x

root: r,w,x

roberto: r,w,x

backup: r,x

root: r,w,x

mike: r,x

roberto: r,x

backup: r,x

root: r,w

mike: r

roberto: r

backup: r

Figure 1.5: The access control lists (ACLs) corresponding to the access
control matrix of Table 1.1. We use the shorthand notation of r=read,
w=write, and x=execute.

Advantages

The main advantage of ACLs over access control matrices is size. The total
size of all the access control lists in a system will be proportional to the
number of nonempty cells in the access control matrix, which is expected to
be much smaller than the total number of cells in the access control matrix.

Another advantage of ACLs, with respect to secure computer systems,
is that the ACL for an object can be stored directly with that object as part
of its metadata, which is particularly useful for file systems. That is, the
header blocks for files and directories can directly store the access control
list of that file or directory. Thus, if the operating system is trying to decide
if a user or process requesting access to a certain directory or file in fact has
that access right, the system need only consult the ACL of that object.

Disadvantages

The primary disadvantage of ACLs, however, is that they don’t provide an
efficient way to enumerate all the access rights of a given subject. In order to
determine all the access rights for a given subject, s, a secure system based
on ACLs would have to search the access control list of every object looking
for records involving s. That is, determining such information requires
a complete search of all the ACLs in the system, whereas the similar
computation with an access control matrix simply involves examining the
row for subject s.

Unfortunately, this computation is sometimes necessary. For example, if
a subject is to be removed from a system, the administrator needs to remove
his or her access rights from every ACL they are in. But if there is no way
to know all the access rights for a given subject, the administrator has no
choice but to search all the ACLs to find any that contain that subject.

22 Chapter 1. Introduction

1.2.3 Capabilities

Another approach, known as capabilities, takes a subject-centered ap-
proach to access control. It defines, for each subject s, the list of the objects
for which s has nonempty access control rights, together with the specific
rights for each such object. Thus, it is essentially a list of cells for each row
in the access control matrix, compressed to remove any empty cells. (See
Figure 1.6.)

/etc/passwd: r,w,x; /usr/bin: r,w,x;

/u/roberto: r,w,x; /admin/: r,w,x
root

/usr/passwd: r; /usr/bin: r;

/u/roberto: r,w,x
roberto

/usr/passwd: r; /usr/bin: r,xmike

backup
/etc/passwd: r,x; /usr/bin: r,x;

/u/roberto: r,x; /admin/: r,x

Figure 1.6: The capabilities corresponding to the access control matrix of Ta-
ble 1.1. We use the shorthand notation of r=read, w=write, and x=execute.

Advantages

The capabilities access control model has the same advantage in space over
the access control matrix as the access control list model has. Namely,
a system administrator only needs to create and maintain access control
relationships for subject-object pairs that have nonempty access control
rights. In addition, the capabilities model makes it easy for an administrator
to quickly determine for any subject all the access rights that that subject
has. Indeed, all she needs to do is read off the capabilities list for that
subject. Likewise, each time a subject s requests a particular access right
for an object o, the system needs only to examine the complete capabilities
list for s looking for o. If s has that right for o, then it is granted it. Thus, if
the size of the capabilities list for a subject is not too big, this is a reasonably
fast computation.

1.2. Access Control Models 23

Disadvantages

The main disadvantage of capabilities is that they are not associated directly
with objects. Thus, the only way to determine all the access rights for an
object o is to search all the capabilities lists for all the subjects. With the
access control matrix, such a computation would simply involve searching
the column associated with object o.

1.2.4 Role-Based Access Control

Independent of the specific data structure that represents access control
rights, is another approach to access control, which can be used with any
of the structures described above. In role-based access control (RBAC),
administrators define roles and then specify access control rights for these
roles, rather than for subjects directly.

So, for example, a file system for a university computer science depart-
ment could have roles for “faculty,” “student,” “administrative personnel,”
“administrative manager,” “backup agent,” “lab manager,” “system ad-
ministrator,” etc. Each role is granted the access rights that are appropriate
for the class of users associated with that role. For instance, a backup agent
should have read and execute access for every object in the file system, but
write access only to the backup directory.

Once roles are defined and access rights are assigned to role-object pairs,
subjects are assigned to various roles. The access rights for any subject are
the union of the access rights for the roles that they have. For example,
a student who is working part time as a system administrator’s assistant
to perform backups on a departmental file system would have the roles
“student” and “backup agent,” and she would have the union of rights
that are conferred to these two roles. Likewise, a professor with the roles
“faculty” and“lab manager” would get all the access rights in the union
of these roles. The professor who serves as department chair would have
in addition other roles, including “administrative manager” and “system
administrator.”

Role Hierarchies

In addition, a hierarchy can be defined over roles so that access rights
propagate up the hierarchy. Namely, if a role R1 is above role R2 in the
hierarchy, then R1 inherits the access rights of R2. That is, the access
rights of R1 include those of R2. For example, in the role hierarchy for a
computer science department, role “system administrator,” would be above

24 Chapter 1. Introduction

role “backup agent” and role “administrative manager,” would be above
role “administrative personnel.”

Hierarchies of roles simplify the definition and management of permis-
sions thanks to the inheritance property. Thy are the main feature that
distinguishes roles from groups of users. An example of hierarchy of roles
for a computer science department is shown in Figure 1.7. The role-based
access control model is described in more detail in Section 9.2.3.

Department

Member

Administrative

Personnel

Accountant Secretary

Administrative

Manager

Faculty

Lab

Technician

Lab

Manager

Student

Undergraduate

Student

Graduate

Student

Department

Chair

Technical

Personnel

Backup

Agent

System

Administrator

Undergraduate

TA

Graduate

TA

Figure 1.7: Example of hierarchy of roles for a computer science department.

Advantages and Disadvantages

The advantage of role-based access control is that, no matter which access
control framework is being used to store access control rights, the total
number of rules to keep track of is reduced. That is, the total set of roles
should be much smaller than the set of subjects; hence, storing access rights
just for roles is more efficient. And the overhead for determining if a subject
s has a particular right is small, for all the system needs to do is to determine
if one of the roles for s has that access right.

The main disadvantage of the role-based access control model is that it
is not implemented in current operating systems.

1.3. Cryptographic Concepts 25

1.3 Cryptographic Concepts

Computer security policies are worthless if we don’t have ways of enforc-
ing them. Laws and economics can play an important role in deterring
attacks and encouraging compliance, respectively. However, technological
solutions are the primary mechanism for enforcing security policies and
achieving security goals.

That’s were cryptography comes in. We can use cryptographic tech-
niques to achieve a broad range of security goals, including some that at
first might even seem to be impossible. In this section, we give an overview
of several fundamental cryptographic concepts. A more detailed coverage
of cryptographic principles and techniques is provided in Chapter 8.

1.3.1 Encryption

Traditionally, encryption is described as a means to allow two parties,
customarily called Alice and Bob, to establish confidential communication
over an insecure channel that is subject to eavesdropping. It has grown to
have other uses and applications than this simple scenario, but let us nev-
ertheless start with the scenario of Alice and Bob wanting to communicate
in a confidential manner, as this gives us a foundation upon which we can
build extensions later.

Suppose, then, that Alice has a message, M, that she wishes to commu-
nicate confidentially to Bob. The message M is called the plaintext, and it
is not to be transmitted in this form as it can be observed by other parties
while in transit. Instead, Alice will convert plaintext M to an encrypted
form using an encryption algorithm E that outputs a ciphertext C for M.
This encryption process is denoted by

C = E(M).

Ciphertext C will be what is actually transmitted to Bob. Once Bob has
received C, he applies a decryption algorithm D to recover the original
plaintext M from ciphertext C. This decryption process is denoted

M = D(C).

The encryption and decryption algorithms are chosen so that it is infeasible
for someone other than Alice and Bob to determine plaintext M from ci-
phertext C. Thus, ciphertext C can be transmitted over an insecure channel
that can be eavesdropped by an adversary.

26 Chapter 1. Introduction

Cryptosystems

The decryption algorithm must use some secret information known to Bob,
and possibly also to Alice, but no other party. This is typically accomplished
by having the decryption algorithm use as an auxiliary input a secret num-
ber or string called decryption key. In this way, the decryption algorithm
itself can be implemented by standard, publicly available software and
only the decryption key needs to remain secret. Similarly, the encryption
algorithm uses as auxiliary input an encryption key, which is associated
with the decryption key. Unless it is infeasible to derive the decryption key
from the encryption key, the encryption key should be kept secret as well.
That is encryption in a nutshell.

But before Alice and Bob even start performing this encrypted com-
munication, they need to agree on the ground rules they will be using.
Specifically, a cryptosystem consists of seven components:

1. The set of possible plaintexts

2. The set of possible ciphertexts

3. The set of encryption keys

4. The set of decryption keys

5. The correspondence between encryption keys and decryption keys

6. The encryption algorithm to use

7. The decryption algorithm to use

Let c be a character of the classical Latin alphabet (which consists of 23
characters) and k be an integer in the range [−22, +22]. We denote with
s(c, k) the circular shift by k of character c in the Latin alphabet. The shift
is forward when k > 0 and backward for k < 0. For example, s(D, 3) = G,
s(R,−2) = P, s(Z, 2) = B, and s(C,−3) = Z. In the Caesar cipher, the set of
plaintexts and the set of ciphertexts are the strings consisting of characters
from the Latin alphabet. The set of encryption keys is {3}, that is, the set
consisting of number 3. The set of decryption keys is {−3}, that is, the set
consisting of number −3. The encryption algorithm consists of replacing
each character x in the plaintext with s(x, e), where e = 3 is the encryption
key. The decryption algorithm consists of replacing each character x in
the plaintext with s(x, d), where d = −3 is the decryption key. Note the
encryption algorithm is the same as the decryption algorithm and that the
encryption and decryption keys are one the opposite of the other.

1.3. Cryptographic Concepts 27

Modern Cryptosystems

Modern cryptosystems are much more complicated than the Caesar cipher,
and much harder to break. For example, the Advanced Encryption Stan-
dard (AES) algorithm, uses keys that are 128, 196, or 256 bits in length, so
that it is practically infeasible for an eavesdropper, Eve, to try all possible
keys in a brute-force attempt to discover the corresponding plaintext from
a given ciphertext. Likewise, the AES algorithm is much more convoluted
than a simple cyclic shift of characters in the alphabet, so we are not going
to review the details here (see Section 8.1.6).

Symmetric Encryption

One important property of the AES algorithm that we do note here, how-
ever, is that the same key K is used for both encryption and decryption.
Such schemes as this, which use the same key for encryption and de-
cryption, are called symmetric cryptosystems or shared-key cryptosystems,
since Alice and Bob have to both share the key K in order for them to
communicate a confidential message, M. A symmetric cryptosystem is
schematically illustrated in Figure 1.8.

Communication
Sender Recipient

channel
Sender Recipient

encrypt decrypt

ciphertext plaintext

plaintext

h d h dshared
secret

shared
secret

key key

AttackerAttacker
(eavesdropping)

Figure 1.8: A symmetric cryptosystem, where the same secret key, shared
by the sender and recipient, is used to encrypt and decrypt. An attacker
who eavesdrops the communication channel cannot decrypt the ciphertext
(encrypted message) without knowing the key.

28 Chapter 1. Introduction

Symmetric Key Distribution

Symmetric cryptosystems, including the AES algorithm, tend to run fast,
but they require some way of getting the key K to both Alice and Bob
without an eavesdropper, Eve, from discovering it. Also, suppose that n
parties wish to exchange encrypted messages with each other in such a
way that each message can be seen only by the sender and recipient. Using
a symmetric cryptosystem, a distinct secret key is needed for each pair of
parties, for a total of n(n− 1)/2 keys, as illustrated in Figure 1.9.

shared
secret

shared
secret

shared
secret

shared
secret

shared
secret

n (n−1)/2
keyskeys

shared
secret

Figure 1.9: Pairwise confidential communication among n users with a
symmetric cryptosystem requires n(n− 1)/2 distinct keys, each shared by
two users and kept secret from the other users.

Public-Key Encryption

An alternative approach to symmetric cryptosystems is the concept of a
public-key cryptosystem. In such a cryptosystem, Bob has two keys: a
private key, SB, which Bob keeps secret, and a public key, PB, which Bob
broadcasts widely, possibly even posting it on his web page. In order
for Alice to send an encrypted message to Bob, she need only obtain his
public key, PB, use that to encrypt her message, M, and send the result,
C = EPB(M), to Bob. Bob then uses his secret key to decrypt the message as

M = DSB(C).

A public-key cryptosystem is schematically illustrated in Figure 1.10.

1.3. Cryptographic Concepts 29

CommunicationSender RecipientchannelSender Recipient

encrypt decrypt

ciphertextplaintext plaintext

plaintext

bli i tpublic
key

private
key

AttackerAttacker
(eavesdropping)(g)

Figure 1.10: In a public-key cryptosystem, the sender uses the public key of
the recipient to encrypt and the recipient uses its private key to decrypt.
An attacker who eavesdrops the communication channel cannot decrypt
the ciphertext (encrypted message) without knowing the private key.

The advantage of public-key cryptosystems is that they sidestep the
problem of getting a single shared key to both Alice and Bob. Also, only pri-
vate keys need to be kept secret, while public keys can be shared with any-
one, including the attacker. Finally, public-key cryptosystems support ef-
ficient pairwise confidential communication among n users. Namely, only
n distinct private/public key pairs are needed, as illustrated in Figure 1.11.
This fact represents a significant improvement over the quadratic number
of distinct keys required by a symmetric cryptosystem. For example, if we
have 1, 000 users, a public-key cryptosystem uses 1, 000 private/public key
pairs while a symmetric cryptosystem requires 499, 500 secret keys.

private privatep

public public

n key pairsn key pairs
public publicp p

private privatep

Figure 1.11: Pairwise confidential communication among n users with a
public-key cryptosystem requires n key pairs, one per user.

30 Chapter 1. Introduction

Some Disadvantages of Public-Key Cryptography

The main disadvantage of public-key cryptosystems is that in all of the
existing realizations, such as the RSA and ElGamal cryptosystems, the
encryption and decryption algorithms are much slower than the those for
existing symmetric encryption schemes. In fact, the difference in running
time between existing public-key crytosystems and symmetric cryptosys-
tems disourages people for using public-key cryptography for interactive
sessions that use a lot of back-and-forth communication.

Also, public-key cryptosystems require in practice a key length that is
one order of magnitude larger than that for symmetric cryptosystems. For
example, RSA is commonly used with 2, 048-bit keys while AES is typically
used with 256-bit keys.

In order to work around these disadvantages, public-key cryptosystems
are often used in practice just to allow Alice and Bob to exchange a shared
secret key, which they subsequently use for communicating with a symmet-
ric encryption scheme, as shown in Figure 1.12.

CommunicationSender RecipientchannelSender Recipient

t d t
ciphertext

secret
k

secret
encrypt decrypt

ciphertextkey key

public key private keypublic key private key

h d h d
Attacker

shared
secret key

shared
secret keyAttacker

(eavesdropping)

encrypt decrypt

ciphertextplaintext plaintext

Figure 1.12: Use of a public-key cryptosystem to exchange a shared secret
key, which is subsequently employed for communicating with a symmetric
encryption scheme. The secret key is the “plaintext” message sent from the
sender to the recipient.

1.3. Cryptographic Concepts 31

1.3.2 Digital Signatures

Another problem that is solved by public-key cryptosystems is the con-
struction of digital signatures. This solution is derived from the fact that in
typical public-key encryption schemes, we can reverse the order in which
the encryption and decryption algorithms are applied:

EPB(DSB(M)) = M.

That is, Bob can give as input to the decryption algorithm a message, M,
and his private key, SB. Applying the encryption algorithm to the resulting
output and Bob’s public key, which can be done by anyone, yields back
message M.

Using a Private Key for a Digital Signature

This might at first seem futile, for Bob is creating an object that anyone can
convert to message M, that is, anyone who knows his public key. But that
is exactly the point of a digital signature—only Bob could have done such
a decryption. No one else knows his secret key. So if Bob intends to prove
that he is the author of message M, he computes his personal decryption of
it as follows:

S = DSB(M).

This decryption S serves as a digital signature for message M. Bob
sends signature S to Alice along with message M. Alice can recover M
by encrypting signature S with Bob’s public key:

M = EPB(S).

In this way, Alice is assured that message M is authored by Bob and not
by any other user. Indeed, no one but Bob, who has private key SB, could
have produced such an object S, so that EPB(S) = M.

The only disadvantage of this approach is that Bob’s signature will
be at least as long as the plaintext message he is signing, so this exact
approach is not used in practice. We study digital signatures in more detail
in Section 8.4.

32 Chapter 1. Introduction

1.3.3 Simple Attacks on Cryptosystems

Consider a cryptosystem for n-bit plaintexts. In order to guarantee unique
decryption, ciphertexts should have at least n bits or otherwise two or more
plaintexts would map to the same ciphertext. In cryptosystems used in
practice, plaintexts and ciphertexts have the same length. Thus, for a given
symmetric key (or private-public key pair), the encryption and decryption
algorithms define a matching among n-bit strings. That is, each plaintext
corresponds to a unique ciphertext, and vice versa.

Man-in-the-Middle Attacks

The straightforward use of a cryptosystem presented in Section 1.3.1, which
consists of simply transmitting the ciphertext, assures confidentiality. How-
ever, it does not guarantee the authenticity and integrity of the message if
the adversary can intercept and modify the ciphertext. Suppose that Alice
sends to Bob ciphertext C corresponding to a message M. The adversary
modifies C into an altered ciphertext C′ received by Bob. When Bob
decrypts C′, he obtains a message M′ that is different from M. Thus, Bob is
led to believe that Alice sent him message M′ instead of M. This man-in-
the-middle attack is illustrated in Figure 1.13.

CommunicationCommunication
channelSender Recipient

t d tencrypt decrypt

plaintext M plaintext M′

shared shared
ciphertext C

shared
secret

k

shared
secret

k
ciphertext C′

key key

AttackerAttacker
(intercepting)

Figure 1.13: A man-in-the-middle attack where the adversary modifies the
ciphertext and the recipient decrypts the altered ciphertext into an incorrect
message.

1.3. Cryptographic Concepts 33

Similarly, consider the straightforward use of digital signatures pre-
sented in Section 1.3.2. The attacker can modify the signature S created by
Bob into a different string S′ and send to Alice signature S′ together with the
encryption M′ of S′ using Bob’s public key. Note that M′ will be different
from the original message M. When Alice verifies the digital signature S′,
she obtains message M′ by encrypting S′. Thus, Alice is led to believe that
Bob has signed M′ instead of M.

Note that in the above attacks the adversary can arbitrarily alter the
transmitted ciphertext or signature. However, the adversary cannot choose,
or even figure out, what would be the resulting plaintext since he does not
have the ability to decrypt. Thus, the above attacks are effective only if
any arbitrary sequence of bits is a possible message. This scenario occurs,
for example, when a randomly generated symmetric key is transmitted
encrypted with a public-key cryptosystem.

Brute-Force Decryption Attack

Now, suppose instead that valid messages are English text of up to t
characters. With the standard 8-bit ASCII encoding, a message is a binary
string of length n = 8t. However, valid messages constitute a very small
subset of all the possible n-bit strings, as illustrated in Figure 1.14.

Ciphertexts

n-bit strings

Plaintexts

n-bit strings

English

text

Ciphertext of

English text

Figure 1.14: Natural-language plaintexts are a very small fraction of the set
of possible plaintexts. This fraction tends to zero as the plaintext length
grows. Thus, for a given key, it is hard for an adversary to guess a ciphertext
that corresponds to a valid message.

34 Chapter 1. Introduction

Assume that we represent characters with the standard 8-bit ASCII
encoding and let n = 8 the number of bits in a t-byte array. We have that the
total number of possible t-byte arrays is (28)t = 2n. However, it is estimated
that each character of English text carries about 1.25 bits of information, i.e.,
the number of t-byte arrays that correspond to English text is(

21.25
)t

= 21.25t.

So, in terms of the bit length n, the number of n-bit arrays corresponding to
English text is approximately 20.16n.

More generally, for a natural language that uses an alphabet instead of
ideograms, there is a constant α, with 0 < α < 1, such that there are 2αn texts
among all n-bit arrays. The constant α depends on the specific language and
character-encoding scheme used. As a consequence, in a natural language
the fraction of valid messages out of all possible n-bit plaintexts is about

2αn

2n =
1

2(1−α)n
.

Thus, the fraction of valid messages tends rapidly to zero as n grows.
Note that this fraction represents the probability that a randomly selected
plaintext corresponds to meaningful text.

The above property of natural languages implies that it is infeasible for
an adversary to guess a ciphertext that will decrypt to a valid message or
to guess a signature that will encrypt to a valid message.

The previously mentioned property of natural languages has also im-
portant implications for brute-force decryption attacks, where an adversary
tries all possible decryption keys and aims at determining which of the
resulting plaintexts is the correct one. Clearly, if the plaintext is an arbitrary
binary string, this attack cannot succeed, as there is no way for the attacker
to distinguish a valid message. However, if the plaintext is known to be text
in a natural language, then the adversary hopes that only a small subset of
the decryption results (ideally just a single plaintext) will be a meaningful
text for the language. Some knowledge about the possible message being
sent will then help the attacker pinpoint the correct plaintext.

We know that for some constant α > 1, there are 2αn valid text messages
among the 2n possible plaintexts. Let k be the length (number of bits) of the
decryption key. For a given ciphertext, there are 2k possible plaintexts, each
corresponding to a key. From the previous discussion, each such plaintext
is a valid text message with probability 1

2(1−α)n . Hence, the expected number
of plaintexts corresponding to valid text messages is

2k

2(1−α)n
.

1.3. Cryptographic Concepts 35

As the key length k is fixed, the above number tends rapidly to zero as
the ciphertext length n grows. Also, we expect that there is a unique valid
plaintext for the given ciphertext when

n =
k

1− α
.

The above threshold value for n is called the unicity distance for the given
language and key length. For the English language and the 256-bit AES
cryptosystem, the unicity distance is about 304 bits or 38 ASCII-encoded
characters. This is only half a line of text.

From the above discussion, we conclude that brute-force decryption is
likely to succeed for messages in natural language that are not too short.
Namely, when a key yields a plaintext that is a meaningful text, the attacker
has probably recovered the original message.

1.3.4 Cryptographic Hash Functions

To reduce the size of the message that Bob has to sign, we often use
cryptographic hash functions, which are checksums on messages that have
some additional useful properties. One of the most important of these
additional properties is that the function be one-way, which means that
it is easy to compute but hard to invert. That is, given M, it should be
relatively easy to compute the hash value, h(M). But given only a value y,
it should be difficult to compute a message M such that y = h(M). Modern
cryptographic hash functions, such as SHA-256, are believed to be one-way
functions, and result in values that are only 256 bits long.

Applications to Digital Signatures and File System Integrity

Given a cryptographic hash function, we can reduce the time and space
needed for Bob to perform a digital signature by first having him hash the
message M to produce h(M) and then have him sign this value, which
is sometimes called the digest of M. That is, Bob compute the following
signature:

S = ESB(h(M)).

Now to verify signature S on a message M, Alice computes h(M), which is
easy, and then checks that

DPB(S) = h(M).

Signing a cryptographic digest of the message not only is more efficient
than signing the message itself, but also defends against the man-in-the-
middle attack described in Section 1.3.3. Namely, thanks to the one-way

36 Chapter 1. Introduction

property of the cryptographic hash function h, it is no longer possible for
the attacker to forge a message-signature pair without knowledge of the
private key. The encryption of the forged signature S′ now yields a digest
y′ for which the attacker needs to find a corresponding message M′ such
that y′ = h(M′). This computation is unfeasible because h is one-way.

In addition, cryptographic hash functions also have another property
that is useful in the context of digital signatures—they are collision resis-
tant—which implies that, given M, it is difficult to find a different message,
M′, such that h(M) = h(M′). This property makes the forger’s job even
more difficult, for not only it is hard for him to fake Bob’s signature on any
message, it is also hard for him, given a message M and its signature S
created by Bob, to find another message, M′, such that S is also a signature
for M′.

Another application of cryptographic hash functions in secure com-
puter systems is that they can be used to protect the integrity of critical files
in an operating system. If we store the cryptographic hash value of each
such file in protected memory, we can check the authenticity of any such file
just by computing its cryptographic hash and comparing that value with
the one stored in secure memory. Since such hash functions are collision
resistant, we can be confident that if the two values match it is highly likely
that the file has not been tampered with. In general, hash functions have
applications any time we need a compact digest of information that is hard
to forge.

Message Authentication Codes

A cryptographic hash function h can be used in conjunction with a secret
key shared by two parties to provide integrity protection to messages
exchanged over an insecure channel, as illustrated in Figure 1.15. Suppose
Alice and Bob share a secret key K. When Alice wants to send a message
M to Bob, she computes the hash value of the key K concatenated with
message M:

A = h(K||M).

This value A is called a message authentication code (MAC). Alice then
sends the pair (M, A) to Bob. Since the communication channel is insecure,
we denote with (M′, A′) the pair received by Bob. Since Bob knows the
secret K, he computes the authentication code for the received message M
himself:

A′′ = h(K||M′).

If this computed MAC A′′ is equal to the received MAC A′, then Bob is
assured that M′ is the message sent by Alice, i.e., A′′ = A′ implies M′ = M.

1.3. Cryptographic Concepts 37

CommunicationCo u cat o
channel

(attack detected)
=?

MAC received computedmessage M

h 6B34339

MAC
87F9024 h4C66809 4C66809

MAC
message M’

received
MAC

computed
MAC

message M MAC

shared sharedshared
secret

shared
secret

key

Sender RecipientAttacker
key

Sender RecipientAttacker
(modifying)

Figure 1.15: Using a message authentication code to verify the integrity of a
message.

Consider an attacker who alters the message and MAC while in transit.
Since the hash function is one-way, it is infeasible for the attacker to recover
the key k from the MAC A = h(K||M) and the message M sent by Alice.
Thus, the attacker cannot modify the message and compute a correct MAC
A′ for the modified message M′.

1.3.5 Digital Certificates

As illustrated in Figure 1.12, public-key cryptography solves the problem
of how to get Alice and Bob to share a common secret key. That is, Alice
can simply encrypt secret key K using Bob’s public key, PB, and send the
ciphertext to him. But this solution has a flaw: How does Alice know that
the public key, PB, that she used is really the public key for Bob? And if
there are lots of Bobs, how can she be sure she used the public key for the
right one?

Fortunately, there is a fix to this flaw. If there is a trusted authority who
is good at determining the true identities of people, then that authority can
digitally sign a statement that combines each person’s identity with their
public key. That is, this trusted authority could sign a statement like the
following:

“The Bob who lives on 11 Main Street in Gotham
City was born on August 4, 1981, and has email address
bob@gotham.com, has the public key PB, and I stand by this
certification until December 31, 2011.”

38 Chapter 1. Introduction

Such a statement is called a digital certificate so long as it combines
a public key with identifying information about the subject who has that
public key. The trusted authority who issues such a certificate is called a
certificate authority (CA).

Now, rather than simply trusting on blind faith that PB is the public key
for the Bob she wants to communicate with, Alice needs only to trust the
certificate authority. In addition, Alice needs to know the public key for
the CA, since she will use that to verify the CA’s signature on the digital
certificate for Bob. But there are likely to be only a small number of CAs, so
knowing all their public keys is a reasonable assumption. In practice, the
public keys of commonly accepted CAs come with the operating system.
Since the digital certificate is strong evidence of the authenticity of Bob’s
public key, Alice can trust it even if it comes from an unsigned email
message or is posted on a third-party web site.

For example, the digital certificate for a web site typically includes the
following information:

• Name of the certification authority (e.g., Thawte).

• Date of issuance of the certificate (e.g., 1/1/2009).

• Expiration date of the certificate (e.g., 12/31/2011).

• Address of the website (e.g., mail.google.com).

• Name of the organization operating the web site (e.g., “Google, Inc.”).

• Public key used of the web server (e.g., an RSA 1, 024-bit key).

• Name of the cryptographic hash function used (e.g., SHA-256).

• Digital signature.

In fact, when an Internet browser “locks the lock” at a secure web
site, it is doing so based on a key exchange that starts with the browser
downloading the digital certificate for this web server, matching its name
to a public key. Thus, one approach to defend against a phishing attack for
encrypted web sites is to check that the digital certificate contains the name
of the organization associated with the website.

There are a number of other cryptographic concepts, including such
things a zero-knowledge proofs, secret sharing schemes, and broadcast
encryption methods, but the topics covered above are the most common
cryptographic concepts used in computer security applications.

1.4. Implementation and Usability Issues 39

1.4 Implementation and Usability Issues

In order for computer security solutions to be effective, they have to be
implemented correctly and used correctly. Thus, when computer security
solutions are being developed, designers should keep both the program-
mers and users in mind.

1.4.1 Efficiency and Usability

Computer security solutions should be efficient, since users don’t like
systems that are slow. This rule is the prime justification, for example, for
why a public-key cryptosystem is often used for a one-time exchange of a
secret key that is then used for communication with a symmetric encryption
scheme.

An Example Scenario Involving Usability and Access Control

Efficiency and ease of use are also important in the context of access control.
Many systems allow only administrators to make changes to the files that
define access control rights, roles, or entities. So, for example, it is not
possible in some operating systems, including several Linux versions, for
users to define the access control rights for their own files beyond coarse-
grained categories such as “everyone” and “people in my group.” Because
of this limitation, it is actually a cumbersome task to define a new work
group and give access rights to that group. So, rather than going through
the trouble of asking an administrator to create a new group, a user may just
give full access rights to everyone, thus compromising data confidentiality
and integrity.

For example, suppose a group of students decides to work on a software
project together for a big schoolwide contest. They are probably going
to elect a project leader and have her create a subdirectory of her home
directory for all the project code to reside. Ideally, it should be easy for the
leader to define the access control for this directory and allow her partners
to have access to it, but no one else. Such control is often not possible
without submitting a request to an overworked system administrator, who
may or may not respond to such requests from students. So, what should
the project leader do?

40 Chapter 1. Introduction

Possible Solutions

One solution is to have the leader maintain the reference version of the code
in the project directory and require the team members to email her all their
code updates. On receipt of an update from a team member, the leader
would then perform the code revisions herself on the reference version of
the code and would distribute the modified files to the rest of the team.
This solution provides a reasonable level of security, as it is difficult (though
not impossible) to intercept email messages. However, the solution is very
inefficient, as it implies a lot of work for the leader who would probably
regret being selected for this role.

Another possibility is for the project leader to take an easy way out by
hiding the project directory somewhere deep in her home directory, making
that directory be accessible by all the users in the system, and hoping
that none of the competing teams will discover this unprotected directory.
This approach is, in fact, an example of security by obscurity, which is
the approach of deriving security from a fact that is not generally known
rather than employing sound computer security principles (as discussed in
Sections 1.1.1 and 1.1.2). History has taught us again and again, however,
that security by obscurity fails miserably. Thus, the leader of our software
team is forced into choosing between the lesser of two evils, rather than
being given the tools to build a secure solution to her problem.

Users should clearly not have to make such choices between security
and efficiency, of course. But this requirement implies that system designers
need to anticipate how their security decisions will impact users. If doing
the safe thing is too hard, users are going to find a workaround that is easy
but probably not very secure.

Let us now revisit our example of the school programming team. The
most recent versions of Linux and Microsoft Windows allow the owner of
a folder to directly define an access control list for it (see Section 1.2.2),
without administrator intervention. Also, by default such permissions are
automatically applied to all the files and subfolders created within the
folder. Thus, our project leader could simply add an access control list
to the project folder that specifies read, write, and execute rights for each
of the team members. Team members can now securely share the project
folder without the risk of snooping by competing teams. Also, the project
leader needs to create this access control list only once, for the project folder.
Any newly added files and subfolders will automatically inherit this access
control list. This solution is both efficient and easy to use. More details on
advanced file permissions are given in Section 3.3.3.

1.4. Implementation and Usability Issues 41

1.4.2 Passwords

One of the most common means for authenticating people in computer sys-
tems is through the use of usernames and passwords. Even systems based
on cryptographic keys, physical tokens, and biometrics often augment the
security of these techniques with passwords. For example, the secret key
used in a symmetric cryptosystem may be stored on the hard drive in
encrypted form, where the decryption key is derived from a password. In
order for an application to use the secret key, the user will have to enter
her password for the key. Thus, a critical and recurring issue in computer
security circles is password security.

Ideally, passwords should be easy to remember and hard to guess. Un-
fortunately, these two goals are in conflict with each other. Passwords that
are easy to remember are things like English words, pet names, birthdays,
anniversaries, and last names. Passwords that are hard to guess are random
sequences of characters that come from a large alphabet, such as all the
possible characters that can be typed on a keyboard, including lowercase
and uppercase letters, numbers, and symbols. In addition, the longer a
password is used the more it is at risk. Thus, some system administrators
require that users frequently change their passwords, which makes them
even more difficult to remember.

Dictionary Attack

The problem with the typical easy-to-remember password is that it belongs
to a small set of possibilities. Moreover, computer attackers know all these
passwords and have built dictionaries of them. For example, for the English
language, there are less than 50,000 common words, 1,000 common human
first names, 1,000 typical pet names, and 10,000 common last names. In
addition, there are only 36,525 birthdays and anniversaries for almost all
living humans on the planet, that is, everyone who is 100 years old or
younger. So an attacker can compile a dictionary of all these common
passwords and have a file that has fewer than 100,000 entries.

Armed with this dictionary of common passwords, one can perform an
attack that is called, for obvious reasons, a dictionary attack. If an attcker
can try the words in his dictionary at the full speed of a modern computer,
he can attack a password-protected object and break its protections in just
a few minutes. Specifically, if a computer can test one password every
millisecond, which is probably a gross overestimate for a standard com-
puter with a clock speed of a gigahertz, then it can complete the dictionary
attack in 100 seconds, which is less than 2 minutes. Indeed, because of
this risk, many systems introduce a multiple-second delay before reporting

42 Chapter 1. Introduction

password failures and some systems lock out users after they have had a
number of unsuccessful password attempts above some threshold.

Secure Passwords

Secure passwords, on the other hand, take advantage of the full potential
of a large alphabet, thus slowing down dictionary attacks. For instance,
if a system administrator insists on each password being an arbitrary
string of at least eight printable characters that can by typed on a typical
American keyboard, then the number of potential passwords is at least
948 = 6 095 689 385 410 816, that is, at least 6 quadrillion. Even if a computer
could test one password every nanosecond, which is about as fast as any
computer could, then it would take, on average, at least 3 million seconds
to break one such password, that is, at least 1 month of nonstop attempts.

The above back-of-the-envelope calculation could be the reason why
paranoid system administrators ask users to change their passwords every
month. If each attempt takes at least a microsecond, which is more realistic,
then breaking such a password would take at least 95 years on average. So,
realistically, if someone can memorize a complex password, and never leak
it to any untrustworthy source, then it is probably good for a long time.

There are several tricks for memorizing a complex password. Needless
to say in a book on computer security, one of those ways is definitely not
writing the password down on a post-it note and sticking it on a computer
screen! A better way is to memorize a silly or memorable sentence and then
take every first letter of each word, capitalizing some, and then folding in
some special characters. For example, a user, who we will call “Mark,”
could start with the sentence

“Mark took Lisa to Disneyland on March 15,”

which might be how Mark celebrated his anniversary with Lisa. Then this
sentence becomes the string

MtLtDoM15,

which provides a pretty strong password. However, we can do even better.
Since a t looks a lot like the plus sign, Mark can substitute “+” for one of the
t’s, resulting in the password

MtL+DoM15,

which is even stronger. If Mark is careful not to let this out, this password
could last a lifetime.

1.4. Implementation and Usability Issues 43

1.4.3 Social Engineering

The three B’s of espionage—burglary, bribery, and blackmail—apply
equally well to computer security. Add to these three techniques good old
fashion trickery and we come up with one of the most powerful attacks
against computer security solutions—social engineering. This term refers
to techniques involving the use of human insiders to circumvent computer
security solutions.

Pretexting

A classic example of a social engineering attack, for instance, involves an
attacker, Eve, calling a helpdesk and telling them that she has forgotten her
password, when she is actually calling about the account of someone else,
say, someone named “Alice.” The helpdesk agent might even ask Eve a
few personal questions about Alice, which, if Eve has done her homework,
she can answer with ease. Then the courteous helpdesk agent will likely
reset the password for Alice’s account and give the new password to Eve,
thinking that she is Alice. Even counting in the few hours that it takes Eve to
discover some personal details about Alice, such as her birthday, mother’s
maiden name, and her pet’s name, such an attack works faster than a brute-
force password attack by orders of magnitudes, and it doesn’t require any
specialized hardware or software. Such an attack, which is based on an
invented story or pretext, is known as pretexting.

Baiting

Another attack, known as baiting, involves using some kind of “gift” as a
bait to get someone to install malicious software. For example, an attacker
could leave a few USB drives in the parking lot of a company with an
otherwise secure computer system, even marking some with the names of
popular software programs or games. The hope is that some unsuspecting
employee will pick up a USB drive on his lunch break, bring it into the
company, insert it into an otherwise secure computer, and unwittingly
install the malicious software.

Quid Pro Quo

Yet another social engineering attack is the quid pro quo, which is Latin
for “something for something.” For example, an attacker, “Bob,” might
call a victim, “Alice,” on the phone saying that he is a helpdesk agent who
was referred to Alice by a coworker. Bob then asks Alice if she has been

44 Chapter 1. Introduction

having any trouble with her computer or with her company’s computer
system in general. Or he could ask Alice if she needs any help in coming
up with a strong password now that it is time to change her old one. In
any case, Bob offers Alice some legitimate help. He may even diagnose
and solve a problem she has been having with her computer. This is the
“something” that Bob has now offered Alice, seemingly without asking for
anything in return. At that point, Bob then asks Alice for her password,
possibly offering to perform future fixes or offering to do an evaluation of
how strong her password is. Because of the social pressure that is within
each of us to want to return a favor, Alice may feel completely at ease at this
point in sharing her password with Bob in return for his “free” help. If she
does so, she will have just become a victim of the quid pro quo attack.

To increase the chances of succeeding in his attack, Bob may use a voice-
over-IP (VoIP) telephone service that allows for caller-ID spoofing. Thus,
he could supply as his caller-ID the phone number and name of the actual
helpdesk for Alice’s company, which will increase the likelihood that Alice
will believe Bob’s story. This is an instance of another type of attack called
vishing, which is short for VoIP phishing.

In general, social engineering attacks can be very effective methods to
circumvent strong computer security solutions. Thus, whenever a system
designer is implementing an otherwise secure system, he or she should
keep in mind the way that people will interact with that system and the
risks it may have to social engineering attacks.

1.4.4 Vulnerabilities from Programming Errors

The programmers should be given clear instructions on how to produce the
secure system and a formal description of the security requirements that
need to be satisfied. Also, an implementation should be tested against all
the security requirements. Special attention must be paid to sections of the
program that handle network communication and process inputs provided
by users. Indeed, any interaction of the program with the external world
should be examined to guarantee that the system will remain in a secure
state even if the external entity communicating with the system performs
unexpected actions.

There are many examples of systems that enter into a vulnerable state
when a user supplies a malformed input. For example, the classic buffer
overflow attack (see Figure 1.16) injects code written by a malicious user
into a running application by exploiting the common programming error
of not checking whether an input string read by the application is larger
than the variable into which it is stored (the buffer). Thus, a large input

1.4. Implementation and Usability Issues 45

provided by the attacker can overwrite the data and code of the application,
which may result in the application performing malicious actions specified
by the attacker. Web servers and other applications that communicate over
the Internet have been often attacked by remote users by exploiting buffer
overflow vulnerabilities in their code. For a more detailed description of
how buffer overflow attacks work, see Section 3.4.3.

malicious
code name buffer

application
code

enter nameenter name

web server

code

web server

Attacker

(a)

name buffer

malicious
code
li tiapplication

code

web serverweb server

Attacker

(b)

Figure 1.16: A buffer overflow attack on a web server. (a) A web server
accepts user input from a name field on a web page into an unchecked
buffer variable. The attacker supplies as input some malicious code. (b) The
malicious code read by the server overflows the buffer and part of the
application code. The web server now runs the malicious code.

46 Chapter 1. Introduction

1.5 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1.1 Compare and contrast the C.I.A. concepts for information security
with the A.A.A. concepts.

R-1.2 What is the ciphertext in an English version of the Caesar cipher
for the plaintext “ALL ZEBRAS YELP.”

R-1.3 Explain why someone need not worry about being a victim of a
social engineering attack through their cell phone if they are inside
of a Faraday cage.

R-1.4 What are some of the techniques that are used to achieve confiden-
tiality?

R-1.5 What is the most efficient technique for achieving data integrity?

R-1.6 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by spam?

R-1.7 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by Trojan horses?

R-1.8 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by computer viruses?

R-1.9 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by packet sniffers, which monitor all the packets that are
transmitted in a wireless Internet access point?

R-1.10 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by someone burning songs from an online music store onto
a CD, then ripping those songs into their MP3 player software sys-
tem and making dozens of copies of these songs for their friends?

R-1.11 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by someone making so many download requests from an
online music store that it prevents other users from being able to
download any songs?

R-1.12 Compare and contrast symmetric encryption with public-key en-
cryption, including the strengths and weaknesses of each.

R-1.13 List at least three security risks that could arise when someone has
their laptop stolen.

1.5. Exercises 47

R-1.14 Suppose the author of an online banking software system has
programmed in a secret feature so that program emails him the
account information for any account whose balance has just gone
over $10,000. What kind of attack is this and what are some of its
risks?

R-1.15 Suppose an Internet service provider (ISP) has a voice over IP
(VoIP) telephone system that it manages and sells. Suppose further
that this ISP is deliberately dropping 25% of the packets used in
its competitors VoIP system when those packets are going through
this ISP’s routers. What kind of an attack is this?

R-1.16 Give an example of the false sense of security that can come from
using the “security by obscurity” approach.

R-1.17 The English language has an information content of about 1.25 bits
per character. Thus, when using the standard 8-bit ASCII encoding,
about 6.75 bits per character are redundant. Compute the probabil-
ity that a random array of t bytes corresponds to English text.

R-1.18 Suppose that a symmetric cryptosystem with 32-bit key length is
used to encrypt messages written in English and encoded in ASCII.
Given that keys are short, an attacker is using a brute-force exhaus-
tive search method to decrypt a ciphertext of t bytes. Estimate the
probability of uniquely recovering the plaintext corresponding to
the ciphertext for the following values of t: 8, 64, and 512.

R-1.19 Suppose you could use all 128 characters in the ASCII character
set in a password. What is the number of 8-character passwords
that could be constructed from such a character set? How long, on
average, would it take an attacker to guess such a password if he
could test a password every nanosecond?

R-1.20 Doug’s laptop computer was just infected with some malicious
software that uses his laptop’s built-in camera to take a video each
time it senses movement and then upload the video to a popular
video-sharing web site. What type of attack does this involve and
what concepts of computer security does it violate?

R-1.21 The Honyota Corporation has a new car out, the Nav750, which
transmits its GPS coordinates to the Honyota Corporation comput-
ers every second. An owner can then locate their car any time, just
by accessing this site using a password, which is a concatenation
of their last name and favorite ice cream flavor. What are some
security concerns for the Nav750? What are some privacy concerns,
say, if the car’s owner is the spouse, parent, or employer of the car’s
principle driver?

48 Chapter 1. Introduction

R-1.22 The HF Corporation has a new refrigerator, the Monitator, which
has a camera that takes a picture of the contents of the refrigerator
and uploads it to the HF Corporation’s web site. The Monitator’s
owner can then access this web site to see what is inside their
refrigerator without opening the door. For security reasons, the
HF Corporation encrypts this picture using a proprietary algorithm
and gives the 4-digit PIN to decrypt this picture to the Monitator’s
owner, so he or she can get access to the pictures of their Monita-
tor’s interior. What are the security concerns and principles that
this solution does and doesn’t support?

R-1.23 During the 2008 U.S. Presidential campaign, hackers were able
to gain access to an email account of Vice Presidential candidate,
Sarah Palin. Their attack is said to have involved tricking the
mail system to reset Governor Palin’s password, claiming they
were really Palin and had forgotten this password. The system
asked the hackers a number of personal questions regarding Palin’s
identity, including her birthday, zip code, and a personal security
question—“Where did you meet your spouse?”—all of which the
hackers were able to answer using data available on the Internet.
What kind of attack is this an example of? Also, what degree of
security is provided by a password reset feature such as this?

Creativity

C-1.1 Describe an architecture for an email password reset system that is
more secure than the one described in Exercise R-1.23, but is still
highly usable.

C-1.2 Describe an instance of a file that contains evidence of its own
integrity and authenticity.

C-1.3 Suppose an Internet service provider (ISP) has a voice over IP
(VoIP) telephone system that it manages and sells. Suppose further
that this ISP is deliberately dropping 25% of the packets used in
its competitors VoIP system when those packets are going through
this ISP’s routers. Describe how a user could discover that his ISP
is doing this.

C-1.4 Computer viruses, by their very nature, have to be able to replicate
themselves. Thus, a computer virus must store a copy of itself in-
side its own code. Describe how this property of computer viruses
could be used to discover that a computer virus has infected a
certain operating system file.

1.5. Exercises 49

C-1.5 Suppose that you are a computer virus writer; hence, you know
that you need to store a copy of the code for your virus inside
the virus itself. Moreover, suppose you know that a security
administrator is also aware of this fact and will be using it to
detect the presence of your virus in operating systems files, as
described in the previous problem. Explain how you can hide the
embedded copy of your virus so that it is difficult for the security
administrator to find it.

C-1.6 Describe a hybrid scheme for access control that combines both
the access control list and capabilities models. Explain how the
records for this hybrid model can be cross-linked to support object
removal and subject removal in time proportional to their number
of associated access rights; hence, not in time proportional to all the
subject-object access right pairs.

C-1.7 Give two examples of attacks that compromise the integrity of the
meta data of files or directories in a file system.

C-1.8 A rootkit is a piece of malicious software that installs itself into an
operating system and then alters all of the operating system utility
programs that would normally be able to detect this software so
that they do not show its presence. Describe the risks that would
be posed by such software, how it could actually be discovered,
and how such an infection could be repaired.

C-1.9 Benny is a thief who tried to break into an Automated Teller Ma-
chine (ATM) using a screwdriver, but was only able to break five
different keys on the numeric keypad and jam the card reader, at
which point he heard Alice coming, so he hid. Alice walked up,
put in her ATM card, successfully entered her 4-digit PIN, and took
some cash. But she was not able to get her card back, so she drove
off to find help. Benny then went back to the ATM, and started
entering numbers to try to discover Alice’s PIN and steal money
from her account. What is the worst-case number of PINs that
Benny has to enter before correctly discovering Alice’s PIN?

C-1.10 As soon as Barack took office, he decided to embrace modern tech-
nology by communicating with cabinet members over the Internet
using a device that supports cryptographic protocols. In a first
attempt, Barack exchanges with Tim brief text messages, encrypted
with public-key cryptography, to decide the exact amounts of
bailout money to give to the largest 10 banks in the country. Let
pB and pT be the public keys of Barack and Tim, respectively. A
message m sent by Barack to Tim is transmitted as EpT (m) and the
reply r from Tim to Barack is transmitted as EpB(r). The attacker

50 Chapter 1. Introduction

can eavesdrop the communication and knows the following infor-
mation:

• Public keys pB and pT and the encryption algorithm
• The total amount of bailout money authorized by congress

is $900B
• The names of the largest 10 banks
• The amount each bank will get is a multiple of $1B
• Messages and replies are terse exchanges of the following

form:

Barack: How much to Citibank?
Tim: $144B.
Barack: How much to Bank of America?
Tim: $201B.
· · ·

Describe how the attacker can learn the bailout amount for each
bank even if he cannot derive the private keys.

C-1.11 As a result of the above attack, Barack decides to modify the
protocol of Exercise C-1.10 for exchanging messages. Describe two
simple modifications of the protocol that are not subject to the
above attack. The first one should use random numbers and the
second one should use symmetric encryption.

C-1.12 Barack often sends funny jokes to Hillary. He does not care about
confidentiality of these messages but wants to get credit for the
jokes and prevent Bill from claiming authorship of or modifying
them. How can this be achieved using public-key cryptography?

C-1.13 As public-key cryptography is computationally intensive and
drains the battery of Barack’s device, he comes up with an alter-
native approach. First, he shares a secret key k with Hillary but
not with Bill. Next, together with a joke x, he sends over the value
d = h(k||x), where h is a cryptographic hash function. Does value
d provide assurance to Hillary that Barack is the author of x and
that x was not modified by Bill? Justify your answer.

C-1.14 Barack periodically comes up with brilliant ideas to stop the fi-
nancial crisis, provide health care to every citizen, and save the
polar bears. He wants to share these ideas with all the cabinet
members but also get credit for the ideas. Extending the above
approach, he shares a secret key k with all the cabinet members.
Next, he broadcasts each idea z followed by value h(k||z). Does
this approach work or can Tim claim that he came up with the ideas
instead of Barack? Justify your answer.

1.5. Exercises 51

C-1.15 Describe a method that allows a client to authenticate multiple
times to a server with the following requirements:

a. The client and server use constant space for authentication.
b. Every time the client authenticates to the server, a different

random value for authentication is used (for example, if you
have n authentication rounds, the client and the server have
to use n different random values—this means that sharing a
key initially and using it for every round of authentication is
not a valid solution).

Can you find any vulnerabilities for this protocol?

C-1.16 Consider the following method that establishes a secret session key
k for use by Alice and Bob. Alice and Bob already share a secret key
KAB for a symmetric cryptosystem.

a. Alice sends a random value NA to Bob along with her id, A.
b. Bob sends encrypted message EKAB(NA), NB to Alice, where

NB is a random value chosen by Bob.
c. Alice sends back EKAB(NB).
d. Bob generates session key k and sends EKAB(k) to Alice.
e. Now Alice and Bob exchange messages encrypted with the

new session key k.
Suppose that the random values and the keys have the same
number of bits. Describe a possible attack for this authentication
method.
Can we make the method more secure by lifting the assumption
that the random values and the keys have the same number of bits?
Explain.

C-1.17 Alice and Bob shared an n-bit secret key some time ago. Now
they are no longer sure they still have the same key. Thus, they
use the following method to communicate with each other over an
insecure channel to verify that the key KA held by Alice is the same
as the key KB held by Bob. Their goal is to prevent an attacker from
learning the secret key.

a. Alice generates a random n-bit value R.
b. Alice computes X = KA ⊕ R, where ⊕ denotes the exclusive-

or boolean function, and sends X to Bob.
c. Bob computes Y = KB ⊕ X and sends Y to Alice.
d. Alice compares X and Y. If X = Y, she concludes that KA =

KB, that is, she and Bob have indeed the same secret key.
Show how an attacker eavesdropping the channel can gain posses-
sion of the shared secret key.

52 Chapter 1. Introduction

C-1.18 Many Internet browsers “lock the lock” on an encrypted web site so
long as the digital certificate offered for this site matches the name
for this web server. Explain how this could lead to a false sense of
security in the case of a phishing attack.

C-1.19 Explain the risks to Bob if he is willing to sign a seemingly random
string using his private key.

C-1.20 Describe a good solution to the problem of having a group of
students collaborate on a software construction project using the
directory of one of the group members in such a way that it would
be difficult for nonmembers to discover and would not require the
help from a system administrator, assuming that the only access
rights the group leader can modify are those for “everyone.” You
may assume that access rights for directories are “read,” “write,”
and “exec,” where “read” means the files and subdirectories in that
directory can be listed, “write” means members of that directory
can be inserted, deleted, or renamed, and “exec” on a directory
or subdirectory means the user can change his location to that
directory or subdirectory so long as he specifies its exact name.

C-1.21 Suppose an operating system gives users an automatic second
chance functionality, so that any time a user asks to delete a file
it actually gets put into a special “recycle bin” directory, which is
shared by all users, with its access rights defined so that users can
get their files back even if they forget their names. Describe the
security risks that such a functionality poses.

C-1.22 Suppose, in a scenario based on a true story, a network computer
virus is designed so as soon as it is copied onto a computer, X, it
simply copies itself to six of X’s neighboring computers, each time
using a random file name, so as to evade detection. The virus itself
does no other harm, in that it doesn’t read any other files and it
doesn’t delete or modify any other files either. What harm would
be done by such a virus and how would it be detected?

Projects

P-1.1 Implement a “toy” file system, with about a dozen different users
and at least that many directories and files, that uses an access
control matrix to manage access control rights.

P-1.2 Perform the project of Problem P-1.1, but use access control lists.

P-1.3 Perform the project of Problem P-1.1, but use capabilities to define
the access control rights of each user.

Chapter Notes 53

P-1.4 Perform a statistical analysis of all the spam you get in a week,
classifying each as to the types of attacks they are.

P-1.5 Implement a toy symmetric cryptosystem based on the following
method.

a. Keys are 16-bit values.
b. Messages are strings with an even number of characters. One

can always add a blank at the end of an odd-length string.
c. The encryption of a message M of length n (in bytes) is given

by
EK(M) = M⊕ (K||K|| · · ·),

where the key K is repeated n/2 times.
d. The decryption algorithm for a ciphertext C is the same as the

encryption algorithm:

DK(C) = C⊕ (K||K|| · · ·).

Implement a brute-force decryption attack for this cryptosystem
and test it on randomly generated English text messages. Au-
tomate the process of detecting whether a decrypted message is
English test.

Chapter Notes

The ten principles of computer security are from the seminal paper by Saltzer and
Schroeder [86], who caution that the last two principles (work factor and com-
promise recording) are derived from physical security systems and “apply only
imperfectly to computer systems.” The open design principle was first formulated
in a paper by 19th-century French cryptographer Auguste Kerckhoffs [47]. Bruce
Schneier’s Crypto-Gram Newsletter has a well-written article on secrecy, security,
and obscurity [88]. A contemporary introduction to cryptography and its use in
computer systems is given in the book by Ferguson, Schneier and Konho [30]. The
redundancy of natural language was first formally studied by Claude Shannon in
his pioneering paper defining the information-theoretic concept of entropy [91].
Usability issues for email encryption are the subject of an experimental study by
Whitten and Tygar [107].

